

Prof. emer. Dr. Hódi Klára

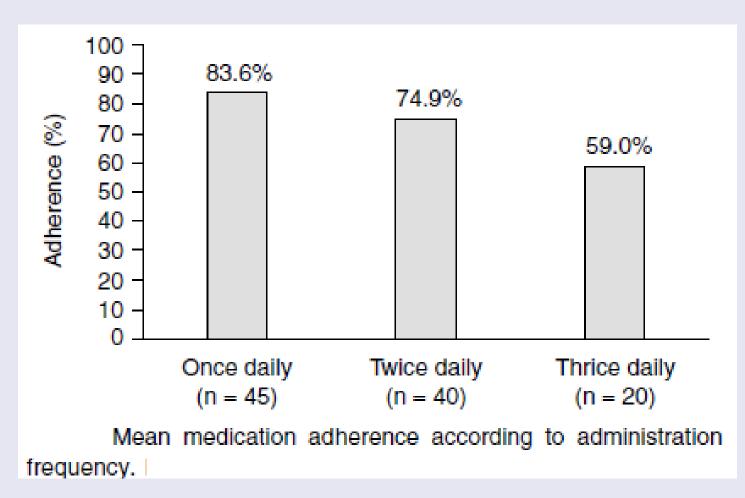
PTE Institute of Pharmaceutical Technology and Biopharmacy, Pécs, 03 February 2020.

Topics of this presentation

- Introduction
- Absorption from the mouth
- Modified drug release
 - Monolithic systems
 - Delayed release systems
 - Coated tablets and capsules
 - Two- and multilayer tablets

Drug therapy

The patients


50 % of patients do not use appropriately the medication (patients with chronic disease),

60%- can not measure well the blood sugar level

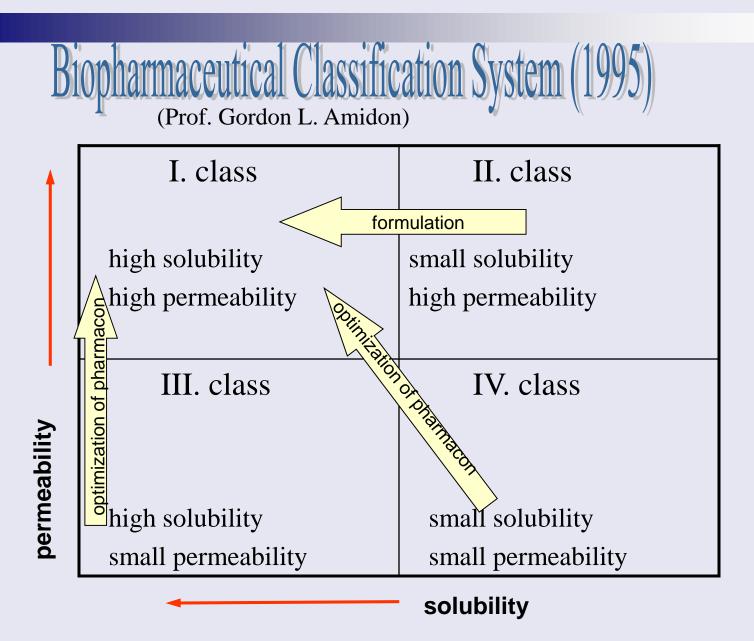
65 %- can not reach the aimed level of blood pressure and (49 %) the colesterol level

The reason is the desorder in the patient's drug usage.

Adherency

From the aspect of recovery the better choice is one pill/tablet per day.

Requirements of innovation in pharmaceutical industry

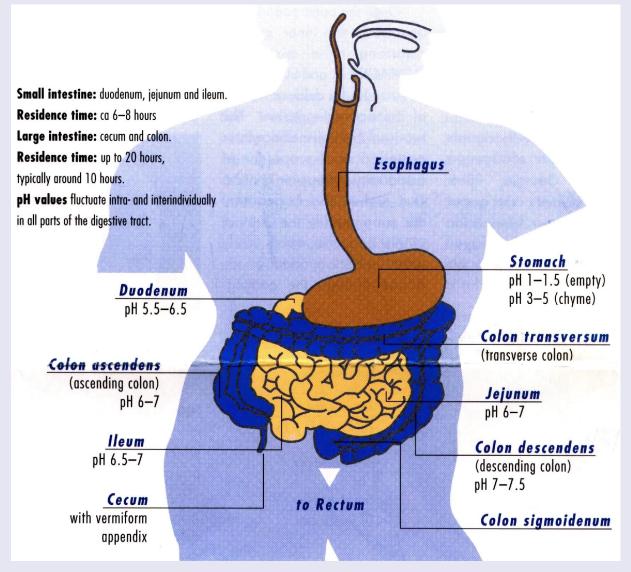

- new products
- quick marketing
- benefit

Results

- increasing in the role of pharmaceutical industry
- increasing in the innovation in pharmaceutical industry
- a lot of inventions and patents

Reasons of the wrong bioavailability:

- 1.) the dissolution is not complete,
- 2.) the API is not in dissolved form at the absorption site, because the delayed liberation from the DDS or the GI-transit is too fast,
- 3.) after the liberation, it degrades/decomposes, absorbes to any surface or forms an inmiscible complex,
- 4.) the API can not go trough the membrane barrier,
- 5.) during the absorption (preabsorptive metabolism) or after this the API can be metabolised (first pass effect), or eliminated (biliar excretion).



Drug therapy

Requirements of drug therapy

- reduction of the dose (side effects),
- perfect fitting for biological environment (absorption site depending of pH),
- perfect fitting for therapeutic requirements (systemic, local, immediate, prolonged, targeted release),
- design of the fate of drug from organism (metabolism, excretion)

pH in the gastrointestinal tract

Parameters of the sections of GI system

Per os	Length	Secretum/day	рН	Food pH	Retention time (h)	Absorption area (m²)
Mouth Oesoph.	10 cm 20 cm	saliva 1-2 I secretum	5.0-8.5		10-20 s 10-20 s	0.02
Gastric	25 cm	gastric juice empty 50-100 ml chyme 2-3 l	1.0-1.5	3-5	0.5-3 h	0.1-0.2
Small intestine Duodenum	25-30 cm	pancreas secretum 7-1.5 I gall 0.6 I mucosal secretum 2-3 I	5,5-6.5	6-6.5	6-8 h	100
Jejunum Ileum	2 m 3 m	water resorption 7 I	6-7 kb. 7.6	6-8		
Colon	1.2-1.5 m	Water resorption 0.3-1 I		7.0-7.5	kb. 10 h	0.5-1
Rectum	10-12 cm	Secretum in rectum	7.2-7.4			0.04-0.07

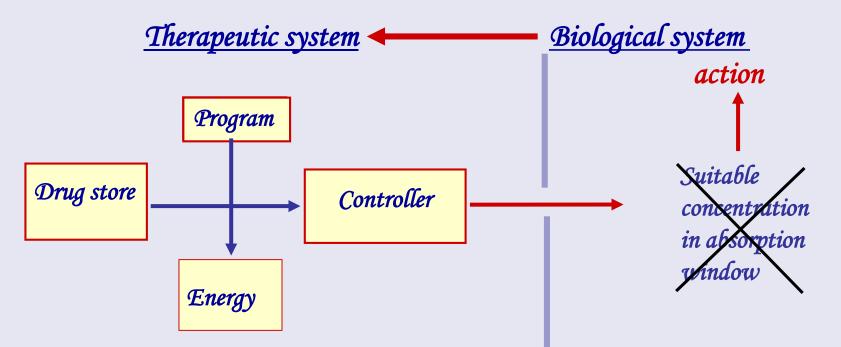
1. generation: conventional products

Conventional drug delivery may not undergo a change – application of a particular composition or manufacturing method – that can intentionally alert the release of active substance.

Tablets, suppositories, ointments, etc.

The physico-chemical and pharmacokinetic (half time, bioavailability) behaviours of the API determine its fate in the human body (dissolution, plasma level, duration of action, side effects).

2. generation: modified release preparations

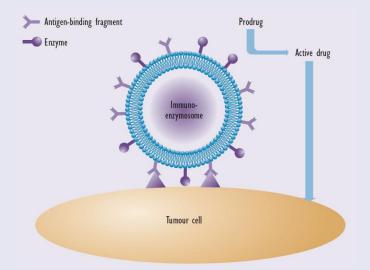

The modified release means the deliberated control of dissolution to achive a better therapeutic effect/effectiveness.

prolonged release, sustained release = SR)
 delayed release (cronotherapeutics systems also = DR)
 pulsatile release (cronotherapeutics = PR)
 immediate (accelerated) release (IR)

Usually, it can improve the compliance, because the preparations with sustained release should be taken rarely so the reduction of the side effect is possible. The controlled drug release can reduce the API blood peaks so the likelyhood and severity of side effects.

3. generation: controlled drug delivery systems

The drug release is controlled in time and in space (therapeutic systems)


The therapeutic system contains 4 parts. The controller registers the decrease of the API in the blood and turns on the work of the therapeutic system.

The energy liberates the API according to program from the drug store and the API has to cross the human organism by the absorption window.

4. generation: space-controlled systems

• Local-specified drug release preparations (delayed) eg. gastroretentive systems

• Targeted drug release preparations

Only the liberated substance can be absorbed in the target cell.

Drug release model

Noyes-Whitney model

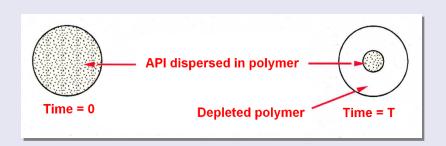
Dissolution-diffusion

$$\frac{dm}{dt} = kA(C_s - C)$$

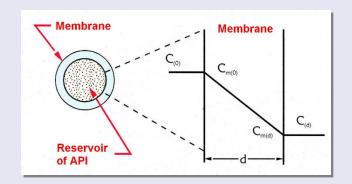
- *m* dissolved API at the 't' time
- t time
- *k* kinetic of dissolution
- *A* surface area
- *C_s* solubility
- *C* concentration of the API at 't' time

Korsmeyer-Peppas model

$$\frac{M_t}{M_\infty} = at^n$$


- *a* constans
- *n* dissolution factor

In the case of *lag time*:


$$\frac{M_t}{M_{\infty}} = a(t-l)^n$$

Water-insoluble polymers

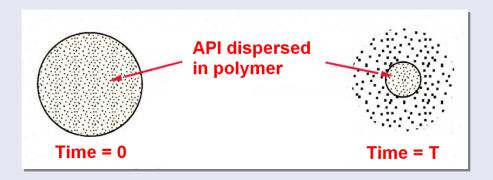
Matrix pellets

Reservoir pellets

$$m = \sqrt{D(2C - C_s)C_s t}$$

m

D


 C_{s}

C

(Higuchi)

dissolved API at 't' time diffusion constant the solubility of the API the initial concentration of the API 17

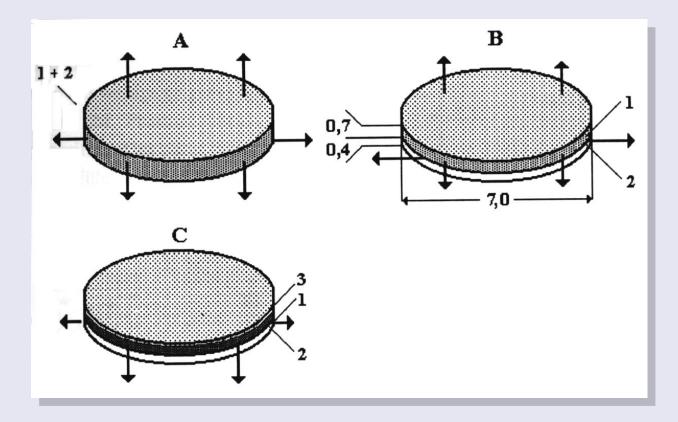
Water-soluble or erodible polymer

$$\frac{M_{t}}{M} = 1 - \left(1 - \frac{k_{o}t}{C_{o}a}\right)^{n}$$

- (Hopfenberg)
- $$\begin{split} M_t &= \text{dissolved API at 't' time} \\ M &= \text{total API} \\ k_0 &= \text{erosion kinetic} \\ C_0 &= \text{initial concentration of API} \\ t &= \text{time} \\ a &= \text{eroding surface} \end{split}$$

Classification of pharmaceutical products

abbreviation	english	mean	example	Usually daily dose
CR	controlled release		Sinemet CR	2 x 1
Duo	-	The API is incorporated into two forms of pellets	Diclofenac Duo Pharmavit	1-2 x
EC	enteric coated	With enterosolvent coat	Videx EC	1 - 2 x
ER	extended release	Sustained release	Efectin ER	1 x
GITS	gastrointestinal therapeutic system	Special DDS with first order kinetic	Adalat GITS	1 x
HBS	hydrodynamically balanced system	(floating tablets)	Madopar HBS	3 x
LA	long acting	Sustained release	Inderal LA	1 x
MR	modified release	módosított hatóanyag-leadás	Preductal MR	2 x 1
OD	once daily	Sustained release preparation what should be taken once a day	Ciplox OD	1 x
SR	sustained release/slow release	Sustained release	Flugalin SR	1 x
TR	time release/ timed release	Sustained / time controlled release	Rondec TR*	2 x
XL	extended liberation extra long (release)	Sustained release	Cardura XL	1 x
XR	extended release	Sustained release	Glucophage XR	1 x
ZOK, Z	zero order kinetics	Sustained release preparation with first order kinetic	Betaloc ZOK Metoprolol Z Hexal	1 x


Absorption from the mouth

- lot of capillary
- good absorption of some APIs
- the drug can go immadiatally into the blood
- avoiding of the "first pass effect"
- rapid action

Ph.Eur: Tablets for use in the mouth

Sucker tablets Buccal tablets Sublingual tablets Mucoadhesive preparations (tablets, capsules, filmes) Dispersable tablets (1. disintegrate in water within 3 min or 2. dispersible in mouth without water) Chewable tablets and gums

Bioadhesive tablets

1. Drug layer 2. Biadhesive layer

3. Impermeable cover layer

Preparation may be diverse

Cherving gums

Components

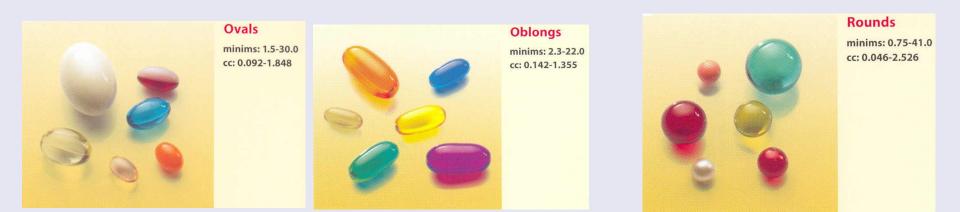
API

Aromatic component

Sweeters: Sorbitol Xylitol Maltitol

1848: first chewing gum 1869: first patent 1928: first medical chewing gum ASA (Aspergum) dimenhydrinate 1978: nicotinic chewing gum

<u>Local effect</u> pH (caries) fluorid (caries) oral infections : gingivitis, periodontitis, stb. (chlorhexidyne) miconazole

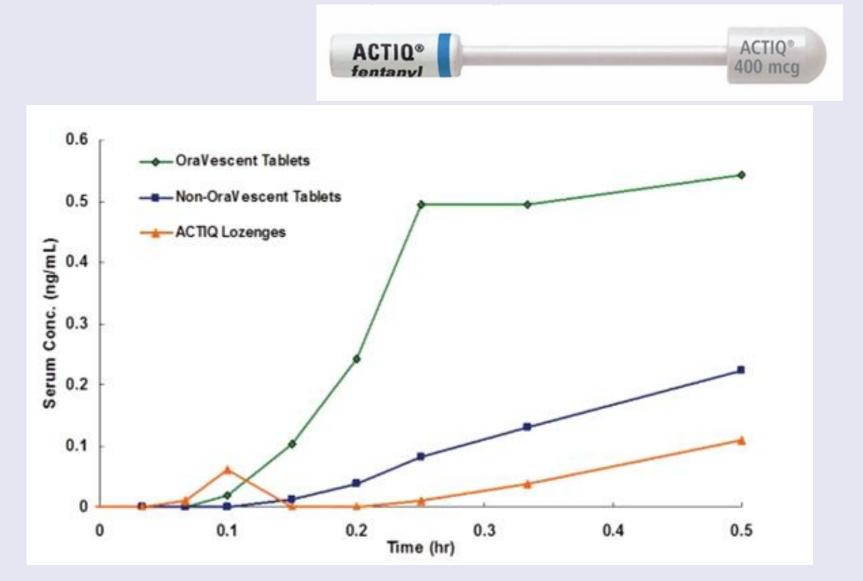

<u>Systemic effect</u> pain (acetyl salicylic acid, methadone) smoking (Nicorette, Nicotinell) obesity (coffein, guarana, chrom- compounds) others (allergy, coughing, sickness, diabetes, etc.)

Soft capsules, filled with the solution of API, but the solvent is not water.

Pl.: Advil ultra, Nurofen soft capsule

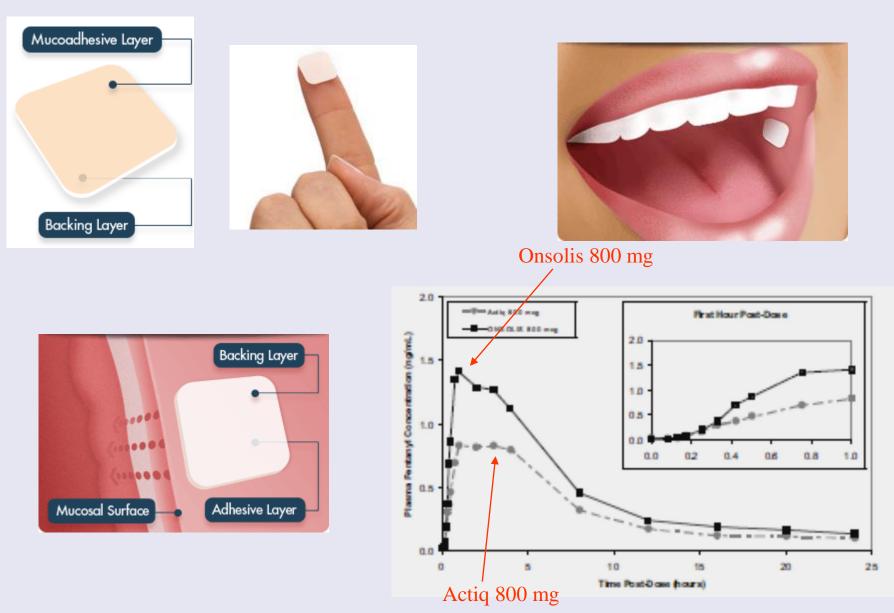
Absorption through the mucosa

OraVescent effervescent buccal tablets



Reason: bioavailability of oral tablets: about 30%

API: fentanyl-citrate



Oral Transmucosal System (OTS) (sucker)


26

Onsolis^R **buccal film (erodeable)**

Dispersable tablets

FDDF = Fast Dissolving Drug Formulation FDDT = Fast Dissolving Disintegrating Tablet

10 mg technecium

comfortable application
without water

FDDF

(Fast Dissolving Delivery Formulation)

Excipients:

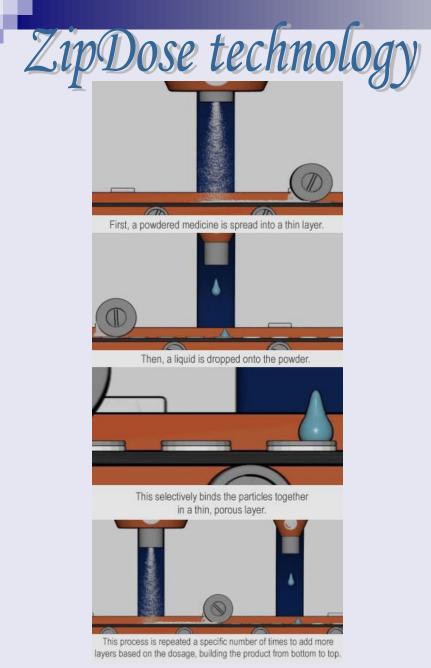
- polymer (dextrin, alginat, xanthan gum etc.)
- sugar alcohols (sorbitol, mannitol etc.)
- surfactant
- buffer (eg. citrate)
- taste masking

Preparation	<u>API</u>	<u>Company</u>
Imodium lingual	Loperamid	Janssen, 1993
Feldene melt	Piroxicam	Pfizer, 1992
Zofran ODT	Ondansetron	Glaxo, 199
Claritin Reditab	Loratadin	Schering Plough, 199
Motilium	Domperidon,	Janssen, 199
Zyprexa Zydis	Olanzapin	Eli Lilly, 200

FDDT

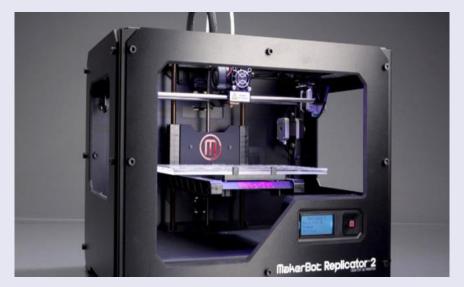
Methods:

- **1.** Compression:
 - **Micronized API**
 - Solid dispersion
- 2. Pastille preparation (from wet mass)
- 3. Freez drying (Zydis technology):
 - aqueous solution or suspension of API
 - filling the formed blisters
 - freez drying
 - closing the blisters

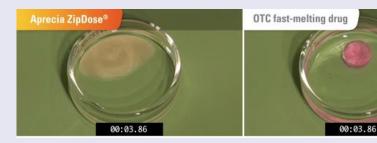

Patent	Method	Company	API
Zydis Quicksolv Lyoc	Cryo dehydration	R. P. Scherer, Inc. Germany Janssen Pharmaceutical Inc. USA Farmaloc, France	Olanzapine Cisaprid monohydrate Fluoroglucynol hydrate
Flashtab Orasolv Durasolv Wowtab Ziplets	Direct compression	Ethypharm, France Cima Labs, INC. USA Cima Labs, INC. USA Yamanouchi Pharma Tech. INC. Eurand International, Italy	Ibuprofen Paracetamol Zolmitriptane Famotidine Ibuprofen
Advatab	Microcapsuls and diffuscap CR	Eurand International, Italy	Cetryzine chloride
Flashdose	"Cotton candy" techn.	Fuisz Technology, Ltd, USA	Tramadol chloride
Oraquick	Micromasc taste masking	KV Pharm. Co. Inc., USA	Hioscyamine sulphate

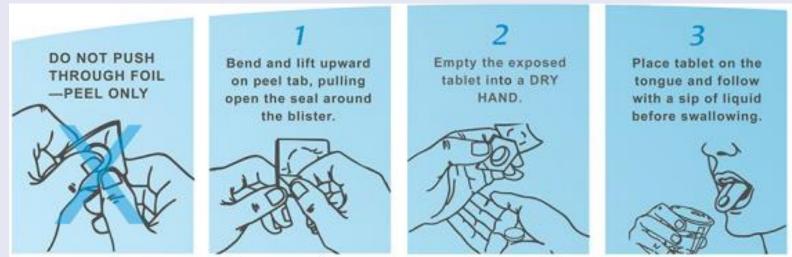
Important: high porosity, superdezintegrants, water soluble excipients

Jesmeen T., Uddin R.: Orodispersible Tablets: A Short Review. S. J. Pharm. Sci. 2011, 4, 96-99 31


Brand name	Excipients	Company	Adventages
Ludipress	Laktose, 3,2% Kollidon 30, Kollidon CL	BASF AG	Small hygroscopicity. Good flowability.
Cellactose	Laktose, 25% cellulose	Meggle GmbH	Good compressibility, savouriness.
Prosolv	MCC, silica dioxid	Penwest	Good flowability, hardnes, and small friability.
Avicel CE-15	MCC, gum arabic	FMC corp.	Good taste masking
ForMaxx	Calcium carbonate, sorbitol	Merck	Homodispersity
Microcelac	MCC, laktose	Meggle	Suitable at high dosis too
Pharmatose DCL 40	95% β-laktose, 5% laktitol	DMV Veghel	Good compressibility
StarLac	85% α–laktose, 15% maize starch	Roquette	Good flowability

3D printed tablets


Spritam tabl.

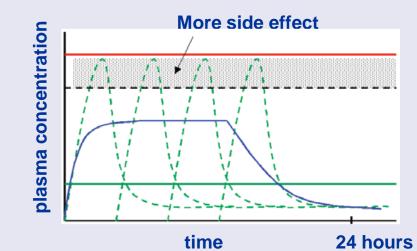

APRECIA Pharmaceuticals Company

- Unit dose
- High porosity
- Quick disintegration

APRECIA Pharmaceuticals Company

Excipents of Spritam tablet

- colloidal silicon dioxide,
- glycerin, mannitol, microcrystalline cellulose, polysorbate 20, povidone,
- sucralose, butylated hydroxyanisole, and natural and artificial spearmint
- flavor.

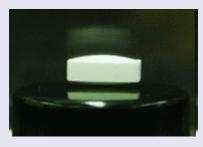

Modified drug release

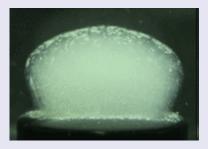
Advantages

- less medication,
- longer action,
- less side effect,
- steady plasma concentration,
- better complience.

Modified drug release:

- sustained release
- delayed release
- pulsatile release
- (immediate release)


Methods: •monolitic matrix •filmcoating •Oral Osmotic System •bi- or multilayer tablets

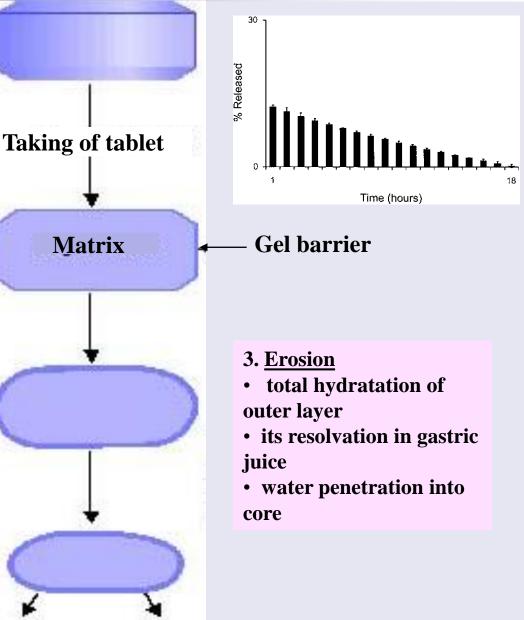

Monolithic systems

Drug release has happen by diffusion or by erosion.

Swellable matrix

Non swellable matrix

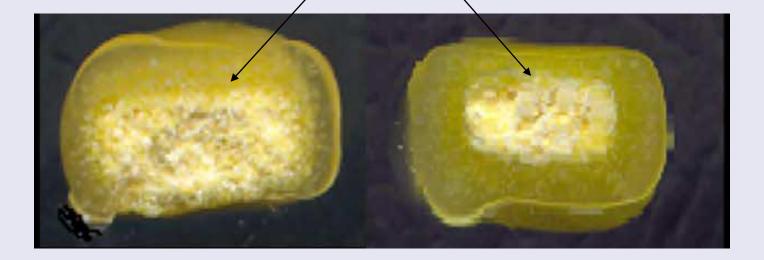
Erodeable matrix



http://www.acino-pharma.com/html/index.php?id=4&L=37

- 1. <u>Wetting</u>
- wetting of the surface
- hydratation of polymer
- gel barrier
- dissolution from the outer layer

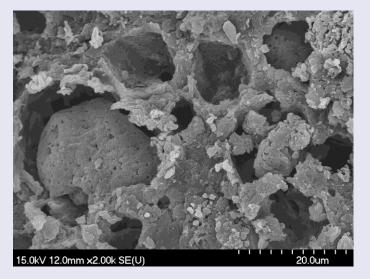
- 2. Expansion of gel layer.
- water penetration into tablet
- inreasing of thickness of gel layer
- liberation of API through the gel layer by diffusion



Water soluble API:dissolution by diffusion

Insoluble API: dissolusion by erosion

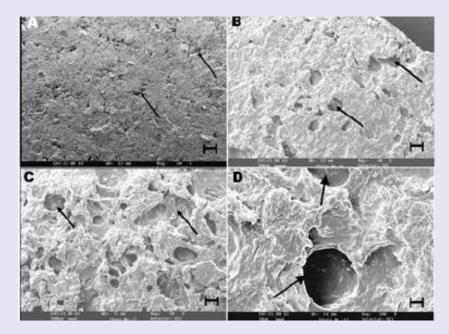
moving gelfront



API: tetracyclin chloride Polymer: HPMC

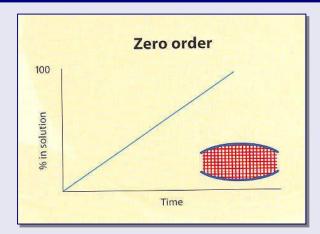
Shahla Jamzad et al.: Int. J. Pharm. 292 (2005) 75-85

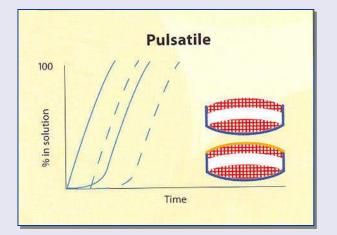
Non swellable matrix

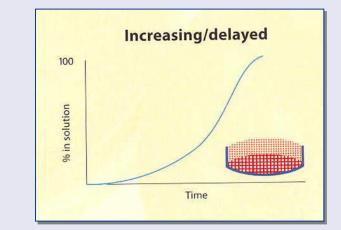

digestible

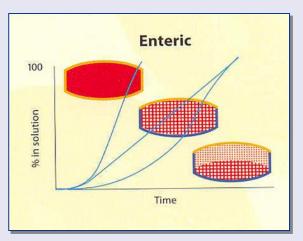
Elnazeer I. Hamedelniel: Development and characterization of matrix pellets prepared by extrusion and spheronization of Atenolol PhD Thesis, Szeged, 2011.

non digestible


Surface of tablet (SEM, 5000x)

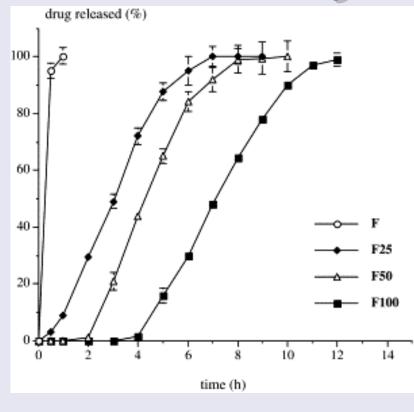



A: before dissolution
B: after 2 hours of dissolution
C: after 5 hours of dissolution
D: after 10 hours of dissolution


Film coating

Combination of film coating and matrix systems

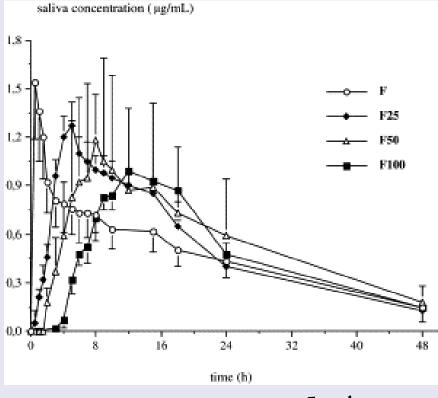
Cardinal Health



Drug release is started later (lag time).
 Gastric resistent (intestinosolvent) preparations

Reasons:

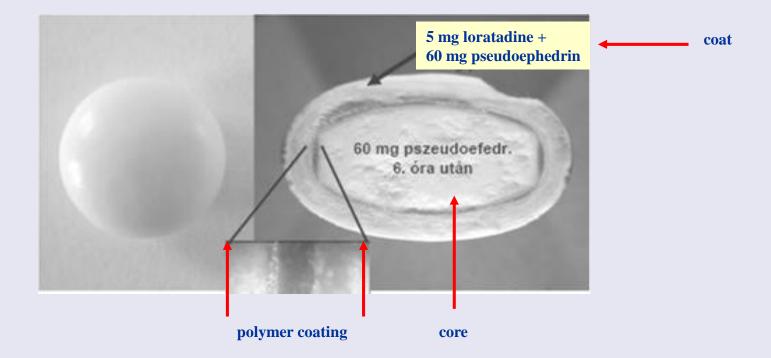
Prevention of API against acidic milieu
 Prevention of mucous membrane against API
 Local therapy in GI system



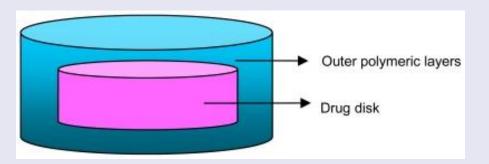
In vitro

<u>Tablet:</u> API: antipyrine Coating: HPMC

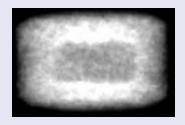
Film coating

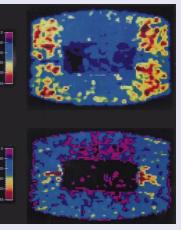

In vivo 43

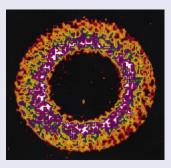
Delayed release preparations

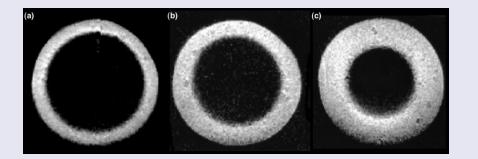


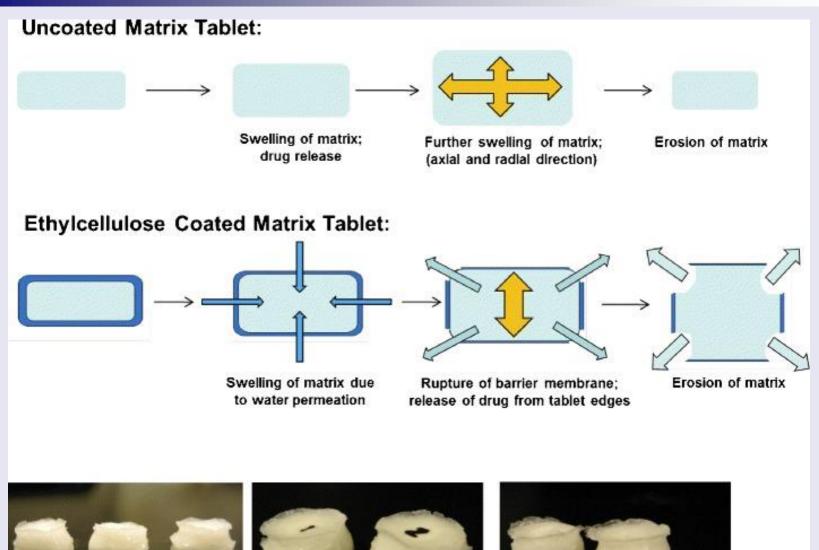
Multilayer coated tablets

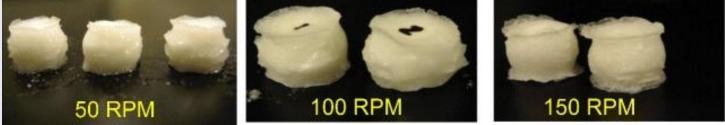


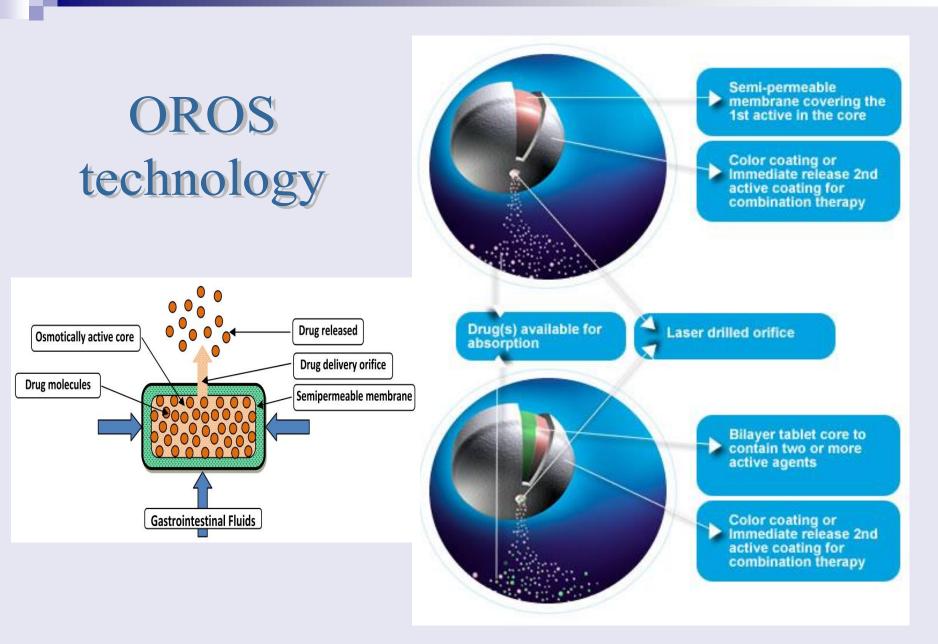

Geolock technology




Cross section



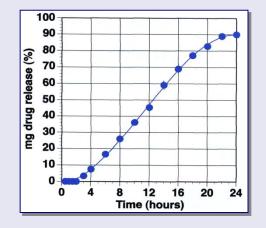



Viewed from above

Colin D. Melia, Ali R. Rajabi-Siahboomi and Richard W. Bowtell: Magnetic resonance imaging of controlled release pharmaceutical dosage forms. PSTT Vol. 1, No. 1 April 1998, 32-39

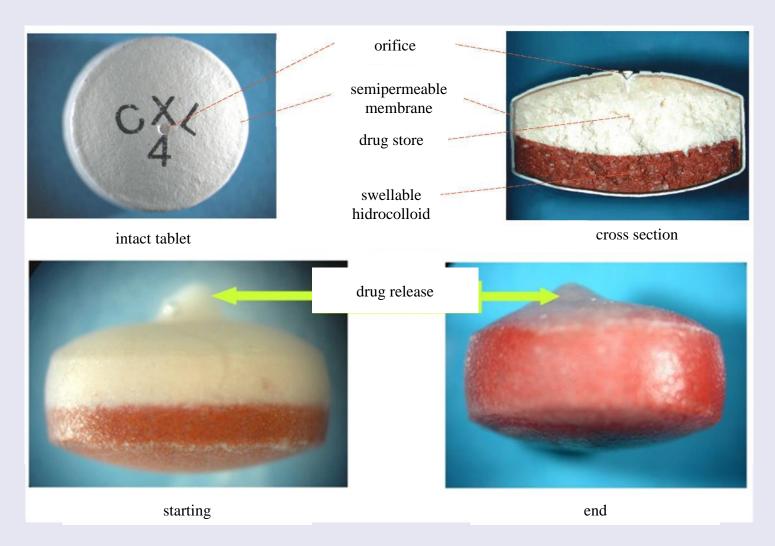
Adalat OROS tablet

Components

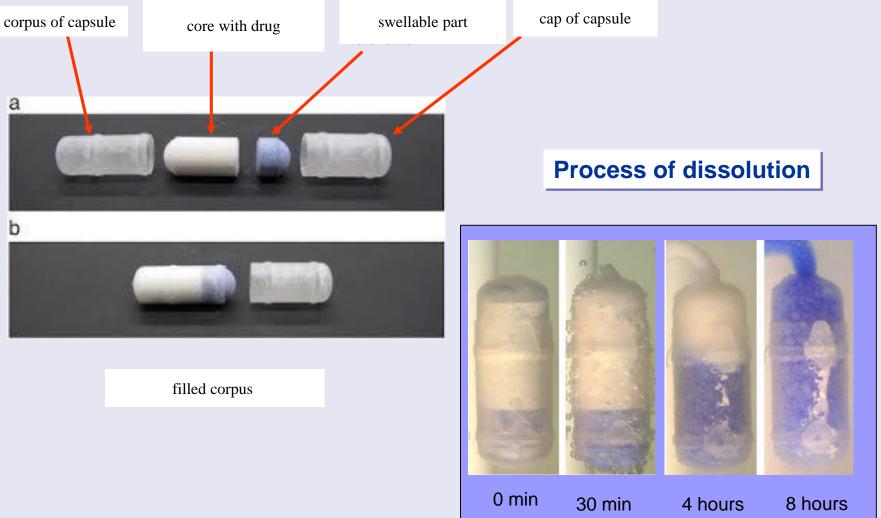

API: Core and coating:

nifedipine

magnesium stearate, hypromellose (5 cP), poliethylene oxide, cellulose acetate, hidroxy propyl cellulose, titan dioxide (E 171), hypromellose (3 cP), propylene glycol, red iron oxide (E 172), hypromellose (5 cP).


Colour:

Opacode S-1-17823 (containing black iron oxide /E 172/).



Cardura XL

Osmotic capsules

Kenneth C. et al.:Osmotic capsules: An universal oral, controlled-release drug delivery dosage form. J. Controlled Release, 152, 264-269, 2011

Dissolution model of osmotic systems

$$\frac{dm}{dt} = \frac{AK}{h(\Delta \pi - \Delta p)c}$$

- $\Delta \pi$ osmotic pressure
- Δp hydrostatic pressure
- *A* surface of the membrane
- *c* concentration of API in the osmotic pump
- *K* constans

Two or multilayer tablets

- long time therapy

Barrie

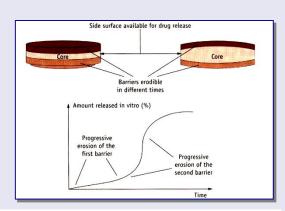
Active core

Barrier

Active core

Barrier

Active core

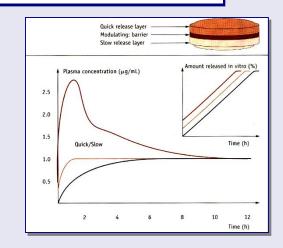

- combination-therapy
- different drugs (short and long life time) together
- rapid and slow release layer with the same drug
- decreasing the side effect

Two-layer system

Three-lave

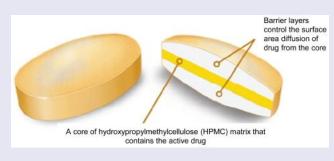
system

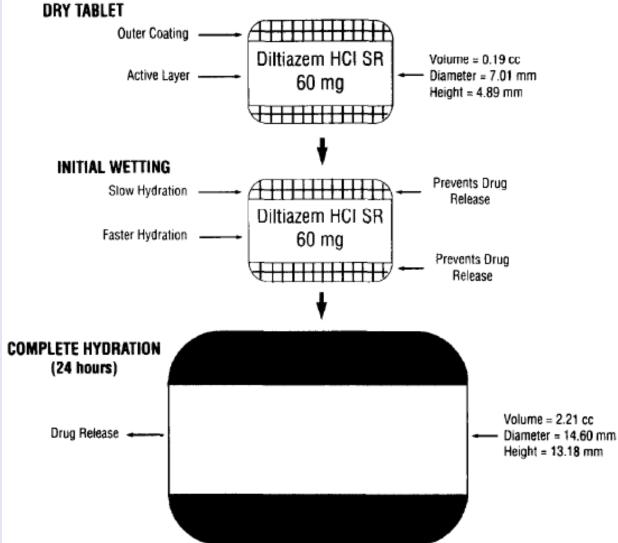
Biomodale release tablet: Two different erodeable barrier


Conte, U., Maggi, L.: Multi-layer Tablets as Drug Delivery Devices, Pharm. Technol. Eur., February 1998, Vol 10, No 2, 18-25

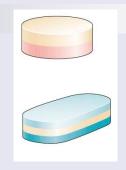
Eg.: Multi-Tabs tabl., Coldrex tabl., Diclac retard tbl., MicardisPlus tabl., Ferrograd filmtabl., stb.

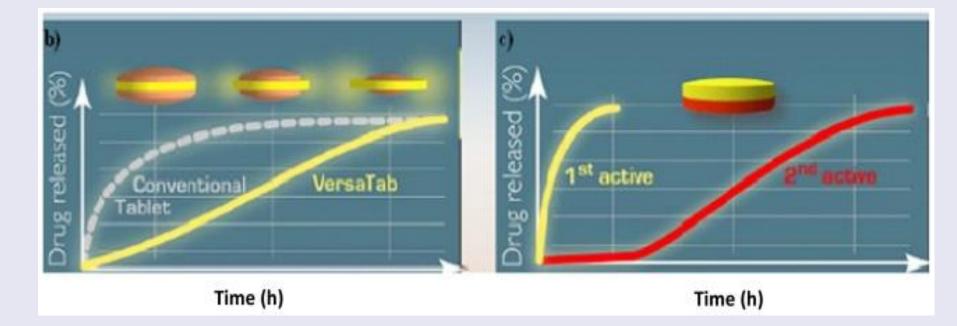
Elan Drug technology


rapid/slow release layer:


Combination: 0:120 mg (--), 30/120 mg (--) and 90/120 mg (--)

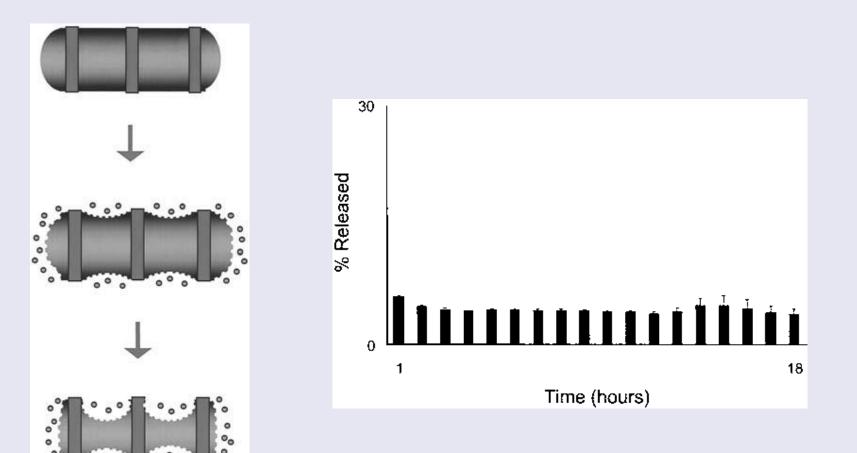
Multilayer tablets


Geomatrix



SkyePharma

Solutions

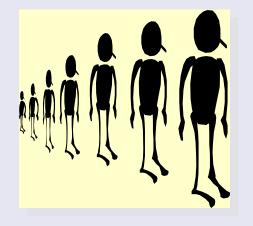

Decie webverer	Derrier	Type of	Type of
Basic polymer	Barrier	tablet	dissolution
Hydrophil	Hydrophil	Two layer	Sustained r.
Hydrophil	Hydrophob	Two layer	Sustained r.
Hydrophob	Hydrophil (Methocel [®] K4M)	Three layer	0 order k.
Hydrophob (CW)	Hydrophob (karnauba wax)	Three layer	Non-linear drug release
Hydrophob (CW)	Hydrophil (Methocel [®] K15M) and Hydrophob (CW)	Three layer	0 order k.
Hydrophil (HPMCAS&HPMC)	Hydrophob (EC)	Three layer	0 order k.

ring-like coating
unsoluble and non
erodeable polymer
number and thickness
of rings

RINGCAP technology

Press-Fit és XPress-Fit gelcap

Caplet of a specified shape and dimension ...


Both Press-Fit^{*} and XPress-Fit^{*} gelcaps assume the shape of the caplet at the conclusion of the cold-shrink process.

SMARTRIX technology

Controlling by geometry of matrix :

... and we are going on ...

